NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

  • 一个强大的N维数组对象 ndarray
  • 广播功能函数
  • 整合 C/C++/Fortran 代码的工具
  • 线性代数、傅里叶变换、随机数生成等功能

NumPy Ndarray 对象

NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。

创建一个 ndarray 只需调用 NumPy 的 array 函数即可:

numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

解释各参数含义

名称描述
object数组或嵌套的数列
dtype数组元素的数据类型,可选
copy对象是否需要复制,可选
order创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)
subok默认返回一个与基类类型一致的数组
ndmin指定生成数组的最小维度

NumPy 数据类型

numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符。

dtype 对象是使用以下语法构造的:

numpy.dtype(object, align, copy)
  • object - 要转换为的数据类型对象
  • align - 如果为 true,填充字段使其类似 C 的结构体。
  • copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用

例子:

import numpy as np
# 定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) 
a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student) 
print(a)

输出结果为:

[('abc', 21, 50.0), ('xyz', 18, 75.0)]

NumPy 创建数组

ndarray 数组除了可以使用底层 ndarray 构造器来创建外,也可以通过以下几种方式来创建。

numpy.empty

numpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:

numpy.empty(shape, dtype = float, order = 'C')

参数说明:

参数描述
shape数组形状
dtype数据类型,可选
order有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。

numpy.zeros

创建指定大小的数组,数组元素以 0 来填充:

numpy.zeros(shape, dtype = float, order = 'C')

参数说明:

参数描述
shape数组形状
dtype数据类型,可选
order'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组

numpy.ones

创建指定形状的数组,数组元素以 1 来填充:

numpy.ones(shape, dtype = None, order = 'C')

参数说明:

参数描述
shape数组形状
dtype数据类型,可选
order'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组

NumPy 从已有的数组创建数组

numpy.asarray

numpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个。

参数说明:

参数描述
a任意形式的输入参数,可以是,列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组
dtype数据类型,可选
order可选,有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。

例子将列表转换成ndarray

import numpy as np 
x =  [1,2,3] 
a = np.asarray(x)  
print (a)

numpy.frombuffer

numpy.frombuffer 用于实现动态数组。

numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。

参数说明:

参数描述
buffer可以是任意对象,会以流的形式读入。
dtype返回数组的数据类型,可选
count读取的数据数量,默认为-1,读取所有数据。
offset读取的起始位置,默认为0。

numpy.fromiter

numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组。

参数描述
iterable可迭代对象
dtype返回数组的数据类型
count读取的数据数量,默认为-1,读取所有数据

NumPy 从数值范围创建数组

numpy.arange

根据 start 与 stop 指定的范围以及 step 设定的步长,生成一个 ndarray。

numpy.arange(start, stop, step, dtype)

参数说明:

参数描述
start起始值,默认为0
stop终止值(不包含)【左闭右开】
step步长,默认为1
dtype返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。

numpy.linspace

numpy.linspace 函数用于创建一个一维数组,数组是一个等差数列构成的,格式如下:

np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

参数说明:

参数描述
start序列的起始值
stop序列的终止值,如果endpointtrue,该值包含于数列中 【默认左闭右闭】
num要生成的等步长的样本数量,默认为50
endpoint该值为 true 时,数列中包含stop值,反之不包含,默认是True。
retstep如果为 True 时,生成的数组中会显示间距,反之不显示。
dtypendarray 的数据类型

numpy.logspace

numpy.logspace 函数用于创建一个于等比数列。格式如下:

np.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)

base 参数意思是取对数的时候 log 的下标。

参数描述
start序列的起始值为:base ** start
stop序列的终止值为:base ** stop。如果endpointtrue,该值包含于数列中
num要生成的等步长的样本数量,默认为50
endpoint该值为 true 时,数列中中包含stop值,反之不包含,默认是True。
base对数 log 的底数。默认是10
dtypendarray 的数据类型

将对数的底数设置为 2 :

实例:

import numpy as np
a = np.logspace(0,9,10,base=2)
print (a)

输出:

[  1.   2.   4.   8.  16.  32.  64. 128. 256. 512.]

NumPy 切片和索引

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。

ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

我们也可以通过冒号分隔切片参数 start:stop:step 来进行切片操作

冒号 : 的解释:如果只放置一个参数,如 [2],将返回与该索引相对应的单个元素。如果为 [2:],表示从该索引开始以后的所有项都将被提取。如果使用了两个参数,如 [2:7],那么则提取两个索引(不包括停止索引)之间的项。

NumPy 高级索引

NumPy 中的高级索引指的是使用整数数组、布尔数组或者其他序列来访问数组的元素。相比于基本索引,高级索引可以访问到数组中的任意元素,并且可以用来对数组进行复杂的操作和修改。

整数数组索引

整数数组索引是指使用一个数组来访问另一个数组的元素。这个数组中的每个元素都是目标数组中某个维度上的索引值。

以下实例获取数组中 (0,0),(1,1)(2,0) 位置处的元素。

实例

import numpy as np 
 
x = np.array([[1,  2],  [3,  4],  [5,  6]]) 
y = x[[0,1,2],  [0,1,0]]  
print (y)

输出结果为:

[1  4  5]

布尔索引

我们可以通过一个布尔数组来索引目标数组。

布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。

使用了 ~(取补运算符)来过滤 NaN。(a[~np.isnan(a)])

从数组中过滤掉非复数元素。(a[np.iscomplex(a)])

花式索引

花式索引指的是利用整数数组进行索引。

花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。

对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素,如果目标是二维数组,那么就是对应下标的行

花式索引跟切片不一样,它总是将数据复制到新数组中。

一维数组

一维数组只有一个轴 axis = 0,所以一维数组就在 axis = 0 这个轴上取值

二维数组

1、传入顺序索引数组

print (x[[4,2,1,7]]) 输出下表为 4, 2, 1, 7 对应的行

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]
 [20 21 22 23]
 [24 25 26 27]
 [28 29 30 31]]
-------读取下标对应的行-------
[[16 17 18 19]
 [ 8  9 10 11]
 [ 4  5  6  7]
 [28 29 30 31]]

2、传入多个索引数组(要使用 np.ix_)

np.ix_ 函数就是输入两个数组,产生笛卡尔积的映射关系。

笛卡尔乘积是指在数学中,两个集合 X 和 Y 的笛卡尔积(Cartesian product),又称直积,表示为 X×Y,第一个对象是X的成员而第二个对象是 Y 的所有可能有序对的其中一个成员。

import numpy as np 
 
x=np.arange(32).reshape((8,4))
print (x[np.ix_([1,5,7,2],[0,3,1,2])])

例如就这个例子,np.ix_函数,将数组[1,5,7,2]和数组[0,3,1,2]产生笛卡尔积,就是得到(1,0),(1,3),(1,1),(1,2);(5,0),(5,3),(5,1),(5,2);(7,0),(7,3),(7,1),(7,2);(2,0),(2,3),(2,1),(2,2);按坐标找到对应元素。

输出结果为:

[[ 4  7  5  6]
 [20 23 21 22]
 [28 31 29 30]
 [ 8 11  9 10]]

NumPy 广播

广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。

如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。

当运算中的 2 个数组的形状不同时,numpy 将自动触发广播机制。如:

实例

import numpy as np 
 
a = np.array([[ 0, 0, 0],
           [10,10,10],
           [20,20,20],
           [30,30,30]])
b = np.array([0,1,2])
print(a + b)

输出结果为:

[[ 0  1  2]
 [10 11 12]
 [20 21 22]
 [30 31 32]]

广播的规则:

  • 让所有输入数组都向其中形状最长的数组看齐,形状中不足的部分都通过在前面加 1 补齐。
  • 输出数组的形状是输入数组形状的各个维度上的最大值。
  • 如果输入数组的某个维度和输出数组的对应维度的长度相同或者其长度为 1 时,这个数组能够用来计算,否则出错。
  • 当输入数组的某个维度的长度为 1 时,沿着此维度运算时都用此维度上的第一组值。

简单理解:对两个数组,分别比较他们的每一个维度(若其中一个数组没有当前维度则忽略),满足:

  • 数组拥有相同形状。
  • 当前维度的值相等。
  • 当前维度的值有一个是 1。

NumPy 迭代数组

NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。

迭代器最基本的任务的可以完成对数组元素的访问。

控制遍历顺序

  • for x in np.nditer(a, order='F'):Fortran order,即是列序优先;
  • for x in np.nditer(a.T, order='C'):C order,即是行序优先;

修改数组中元素的值

nditer 对象有另一个可选参数 op_flags。 默认情况下,nditer 将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定 readwrite 或者 writeonly 的模式。

for x in np.nditer(a, op_flags=['readwrite']):
x[...]=2*x

广播迭代

如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。 假设数组 a 的维度为 3X4,数组 b 的维度为 1X4 ,则使用以下迭代器(数组 b 被广播到 a 的大小)。

实例

import numpy as np 
 
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print  ('第一个数组为:')
print (a)
print  ('\n')
print ('第二个数组为:')
b = np.array([1,  2,  3,  4], dtype =  int)  
print (b)
print ('\n')
print ('修改后的数组为:')
for x,y in np.nditer([a,b]):  
    print ("%d:%d"  %  (x,y), end=", " )

输出结果为:

第一个数组为:
[[ 0  5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

第二个数组为:
[1 2 3 4]

修改后的数组为:
0:1, 5:2, 10:3, 15:4, 20:1, 25:2, 30:3, 35:4, 40:1, 45:2, 50:3, 55:4,